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PREFACE

The work reported herein was conducted by the Arnold Ehgineorina
Development Center (AEDC), Air Force System Command (AFSC), under
Program Element 65807F. The results were obtained by ARO, Inc.

(a subsidiary of Sverdrup & Parcel and Associates, Inc.), contract
operator of AEDC, AFSC, Arnold Air Force Station, Tenneasee, under
ARO Project Nos. P32A-29A and P32A~COA. The author of this report
was T, W, Binion, Jr., ARO, Inc, The data analysis was completed
on April 26, 1976, and the manuscript (ARO Control No. ARO-PWE-TR~

76-69)'ygs submitted for publication on July 1, 1976,
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1.0 INTRODUCTION

Although wind tunnel testing in the transonic aspeed range is
more than 25 years old, there is stil) insufficient information,
except for very elementary model shapes, to aszess the affect of the
tunnel boundaries on the aerodynamic phenomena under inveetigation,
A program was initiated at the Office National d'Etudes et de Recherches
Aérospatiales (ONERA) to construct a series of 'standard models' for
use in evaluating Reynolds Number and blockage effacts in various wind
tunnels, Teats of the same model in different wind tunnels and
different acales of the same basic configuration in a given tunnel
were designed to provide an experimental data base for (1) the evaluation
of theoretical or empirical correction procedures and (2) the eatablish-
ment or confirmation of guldelines to allow wind tunnel users to select
model to wind tunnel size ratios to satisfy apecific teat objectives.

A cooperative effort between ONERA; the National Aeronautics and
Space Administration (NASA), Ames Rasearch Center (ARC); and the
Arnold Engineering Development Center (AEDC) was initiated whereby
teats of two of the "atandard models" (M3 and M5) and one area equiva-
lent body of revolution (C5) would be conducted in the NASA-ARC 11-ft
Transonic Wind Tunnel (11TWI) and the AEDC Propulsion Wind Tunnel
(16T) and Aerodynamic Wind Tunnel (4T)., The tests were conducted at
identical conditions, with the same instrumentation and support
hardware, and were designed to serve several purposes. From a classical
viewpoint, wall interference may be divided into blockage, downwash,
buoyancy, and streamline curvature effects., Recent experiments, Ref, 1,
have indicated the classical division is valid when the flow 18
subsonic everywhere but casts serious doubts on the classical concepts
when there is supercritical flow over the model, Comparison of data
from the M5 model which contained both force and pressure instrumenta-
tion from the various tunnels should confirm the results of Ref. 1,
Comparison of the M3 and M5 force data with fixed and free transition
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should indicate effects attributable to manufacturing differences, ©
the test section environment, Reynolds number, and wall interference. }f
Finally, the tests with the C5 model were designed to provide data 4
to confirm the theoretical correction procedure of Ref, 2, and to

determine 1f blockage corrections for a model could be computed from 4
an area equivalent body of revolution. It was also intended that ﬁ
the data from Tunnels 16T and 11TWT serve as near-interference-free :
data for compariason with data obtained on the three models in smaller f
wind tunnels. i

2.0 APPARATUS

2.1 TEST FACILITIES

4 . 211 Tunnel 16T L

- : The AEDC Propulsion Wind Tunnel (16T) 18 a variable density, )
_}- : ; continuous~flow tunnel capable of being operated at Mach numbers from g
£ ; 0.3 to 1.6 with Reynolds number variations up to six million par foot.
. { The test section is 16 ft square by 40 ft long and is enclosed by

ﬁ-. ; 60-deg inclined-hole perforated walls of fixed six-percent porosity.

; The general arrangement of the test section is shown in Fig. 1a,

R 2.12 Tunnel 11TWT

8 | The NASA-ARC 11-ft Transonic Wind Tunnel (11IWT) is a variable

;ﬁ{ | dengity, continuous-flow tunnel capable of being operated at Mach'

| ! numbers from 0.7 to 1.4 with Reynolds number variation up to ten million
: per foot, The test section i3 11 ft square by 22 feat long. Each test
i section wall contains 12 baffled slots yilelding a fixed 5,6~percent *J
‘ porosity., The general arrangement of *he test section is shown in ;
l Fig., 1b.

e a1 I L R U . WM
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2.1.3 Tunnel 4T

The AEDC Aerodynamic Wind Tunnel (4T) is a variable density,
continuous~£flow tunnel capable of being operated at Mach numbers from
0.2 to 1.3 at Reynolds numbers up to five million per foot. The test
section 1s 4 ft square by 12,5 ft long and is equipped with 60-deg
inclined-hole variable porosity (0 to 10-percent) walls. The general
arrangement of the test section and wall geometry is shown in Fig. 1lc.

22 EXPERIMENTAL MODELS

- ? The family of ONERA models, shown installed in the wind tunnels
in Fig. 2, 1s of a typical transonic transport configuration. The
wing and tail airfoils have a '"peaky" type symmetric cross section with

_ a maximum thickness of 10.5 percent occurring at the 37,5~percent chord
q; . oo location. The wings have a 30-deg sweep, a 7.31 aspecﬁ ratio, a taper
g ‘ ratio of 0.3, and ara at 4~deg incidence with reapect to the fuselage.
& P Both the wings and elavators hava 3 deg of dihedral., The pertinent

v S | dimensions of the M3 and M5 models are shown in Fig 3. The C5 model is
gﬁ : an area equivalent body of revolution of the M5 configuration. The

l § solid blockage distribution of the models and sting supporta in Tunnel 4T
' are shown in Fig. 4.

Each model was sting mounted on a six-component balance, Not only
were the sting contours neer the model identical in the three tunnels,
fv : the sting configurations were duplicates of those used in the ONERA
$2MA wind tunnel. In addition to the balance, the M5 model contained
three, 48-port, Scanivalves® which were used to measure the wing
presaures at locations indicated in Fig. 5. The C5 model was instru-
nented with two longitudinal rows of pressure orifices located 90 deg
apart.

e TR S T oy X e Ly A T




AEDC-TR-78-133

2.3 INSTRUMENTATION

Forces and moments were measured on each model with internal
strain-gage balances whose output was processed through facility
analog to digital converters. Model pressures were neasured with
15-psid (M5) and 25-psia (C5) strain-gage transducers using 48-port
Scanivalves. Model attitude was measured with the facility system
in each tunnel and with a damped-pendulum angle-of-attack sensor
located at the first sting juncture (see Fig. 2). Each angular
measurement was corrected for model deflection caused by the aero-
dynamic loads.

3.0 PROCEDURE

3.1 EXPERIMENTAL PROCEDURE

Tests with the M3 and M5 model were conducted with the boundary-
layer transition location fixed and free, whereas data were obtained
on the C5 model with fixed-transition only. The transition location was
fixed with triple-sieved glass beads with diameters of 0.0051 ¢ 0.002
in, for the M5 and C5 models and 0,0025 + 0.00002 in. for the M3 model
at the 7-percent chord line on all airfoil surfaces and 2.3 percent of
the fuselage length. Sublimation material was used in both Tunnels 11TWT
and 16T to verify that the boundary-layer trip was effective and for the
free-transition case to verify that the model surface was smooth enough
to allow transition to occur naturally.

Data were obtained at a constant Reynolds number at Mach numbers
from 0.6 to 1.0 and at several Reynolds numbers at Mach number 0.84,
A summary of test conditions is presented in Fig. 6. The wall porosity
in Tunnel 4T was varied from 1.5 to 7 percent as a test variable.
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After the desired tunnel free-~stream conditions were established,
the model was positioned to discrete gravimetric angles of attack from
-4.5 to 4.5 deg. In some instances, model dynamics forced termination
of the pitch polars before 4.5 deg was reached, The model was then
rolled 180 deg in Tunnels 16T and 11TWT and data were obtained at
=4,5 to =2.0 deg to establish the tunnel f£low angularity. In Tunnel
4T, the tunnel flow angularity was deduced by limited inverted tests. -
In eéach tuannel, the instrumentation readings were recorded by an
online computer system which reduced the raw data to ingineering
units, computed pertinent parameters, and tabulated the results,

32 PRECISION OF MEASUREMENTS

Uncertainties (bands which include 95 percent of the calibration
data) of the basic tunnel parameters (Pt and M ) were estimated from
repeat calibrations of the instrumentation and from the repeatability
and uniformity of the test section flow during tunnel calibrations.
Uncertainties in the instrumentation systems were estimated from repeat
calibrations of the systews against secondary standards whose precisions
are traceable to the National Bureau of Standards calibration equipment.
The uncertainties are combined using the Taylor series method of error
propagation to determine the precision of the reduced parameters as
follows:

Model
Parameter M3 M5 C5
ACy, AC, +0.007 £0.005 -
aC,, AC, £0.002 $0.002 -
aAC, $0, 005 +0.003 -
ACp - $0.014 +£0.014

Aa 0.1 10.1 0.1
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40 RESULTS AND DISCUSSION r

§ ! 4.1 EFFECT OF BOUNDARY—LAYER TRANSITION AND REYNOLDS
E | NUMBER

i It i{s, in general, expected that data taken on the same model
with free boundary-layer transition in different wind tunnels will

not be the same because of differences in tunnel flow quality. One
means of characterizing tunnel flow quality is through the concept

1 | of transition Reynolds number, Ref, 3. Dougherty and Steinle, Ref. &,
' have shown the transition Reynolds number on a 10-deg cone to be quite
o different in Tunnels 16T, 11TWT, and 4T. 1In an effort to compensate
for different effective Re in the three test facilities, transiticn ]
was fixed by adhering giass beads at seven-percent chord to the wing F
: and tail surfaces of the ONERA models. The bead size was established 'f
k- : during the Tunnel 11IWT tests which were conducted first. The fact 3
- that transition did indeed occur at the trip location was verified by .j
! _ a sublimation technique in Tunnels 11IWT and 16T. In addition, the

‘ sublimination technique was used to asgure that transition occurred

naturally for the free-transition case in both tunnels,

- Data obtained in Tunnels 16T, 11TWT, and 4T on the M3 and M5

. i models with both fixed and free transition at Mach number 0.84 and

 § .; ' various Reynolds numbers are presented in Figs. 7 and 8. A cursory :

E{ \ examination of the data ia all that is required to establigh the ;3 
f&. ! | distressing fact that only in Tunnel 11IWT, and then only for CN and 1

! : CD with fixed transition, are the data essentially independent of

Reynolds number.

The magnitude of the Reynolds number dependency in the three
tunnels may he more easily seen in Fig. 9 wherein the data are
presented as lines of constant CN as a function of Re, The symbol
size in Fig, 9 is approximutely equal to the data uncertainty. For 4

1 12
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the free-transition case, o and CA frzm Tunnels 16T and 11TWT approach
an asymptotic value at about 2.5 x 100 Re. The asymptotic valuas are
slightly different in each tunnel as one might expcc:_bccnule of varia-
tions in flow quality between the two faciliticq, In Tunnel 4T, vhers
the data are more influenced by wall interference, only CA approaches =
an asymptote. Whether this is caussd by wall interference or the

Tunnel 4T flow quality is, unfortunately, not discernible. However,

it should be noted that a wall-interference investigation of a 2D super-
critical airfoil, Ref, 5, indicated little variation of wall inter-
ference over an Re range from 7 to 30 million. Pitching moment is
extremely Reynolds number dependent in each facility.” The variations

of Cm vith Re is similar in the thrée tunnels but far from identical.

For the fixed~tranaition casa; not only are the data more Reynolds
numbef dependent than the free-transition case but the variation from
tunnel to tunnel is greatei. Pressure distributions obtained on the
M5 model wing indicate the shock/separation pattern is significantly
altered by fixing transition. Typical wing pressure distribution on
the leeward surface from Tunnel 16T are shown in Fig. 10. Fixing
transition causes a 0.1 ¢ forward movement of the shock near the tip
and midspan with a lesser movement at the root section for the case
shown. Notice the trailing-edge boundary layer near midspan is separated
with fixed trangition and attached with free transition. A typical
effect of Reynolds number on the wing pressure distribution with fixed
transition is shown in Fig., 11 where the shock moves forward then
aft at the midspan and inboard section as Reynolds number is increased.
A significant reversal of the direction of the shock movement with
increasing Re occurs only with fixed transition in Tunnel 16T, There
is very little effect of either fixing transition or Reynolds number
variation on the pressure distribution of the windward surface,

Returning to Fig. 9, careful comparison of the data obtained on the

M5 model in Tunnel 4T reveals little effect of fixing transition at a
constant Re (see also Fig. 7c). Even the pitching-moment data are

13
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.

almost identical with fixed and free transition. Obviously, natural «

Tac

transition in Tunnel 4T occurred ahead of the trip location. Since the
data are so senaitive to the state of the bourdary layer, which in /
turn is apparently susceptible to the tunnel flow quality, it ias
impossible to precisely assess the effects of the wall interference on
the M5 model by comparison of the data from one tunnel to the other.
Furthermore, it is obvious by comparing the solid and open symbols in
Fig. 9 that the M3 and M5 models are not sufficiently identical to
allow a model-to-model comparison. The most serious discrepancy

S S A T e
.~ T

e

between the two models appears to be a difference in tail incidence

:%' causing different pitching-moment characteristics., It is rather

T | ironjic that the beat agreement between the M3 and M5 model data occurs

: ' in Tunnel 4T where the models are subjected to the most wall interference.

e 42 COMPARISON OF DATA FROM THE THREE TUNNELS )

S e S

It was the intent to use the ONERA model data from the large tunnels '

a5

to infer the effects of wall interference in smaller facilities. Howaver,
because the data contain inseparable effects of tunnel flow quality,
precise determination of wall-interference factors is impossible.

K- A
A e T e
TS T R

Nevertheless, several methods were investigated to extract empirical

i' : : influence factors, based on classical wall-interference theory, which
y ' would be indicative of the data differences from one tunnel to another.
!ﬂ; ! None of the attempts produced comsistent results., Not only were the

. : pseudo-interference factors dependent upon the aerodynamic coefficient
& being considered, they were also, at most Mach numbers, dependent upon
the angle-of-attack range being considered. The analysis of Vaucheret
and Vayssaire, Ref. 6, shows that empirical values of the wall porosity
parameter, Q, determined from M5 model data at zero lift and a given
Mach number were alsc dependent upon the aerodynamic coefficlent being
considered. The dependency in both cames results from atteﬁpting to
apply classical, linear theoretical conc¢epts to a highly nonlinear
phenomena,

14
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Unfortunately, state of the art wall-intereference theory, while
perhaps providing useful guidelines, is, in general, inadequate with
trangonic flow over the model. Thus, the data obtained on the M3 and
M5 models in Tunnels (6T, 11TWT, and 4T are compared in the suceeding .
analysis directly in terms of the aerodynamic cosfficients ra;her than
empirical interference parameters of doubtful utility. If it ia
assumad that the differences in Tunnels 16T and 11TWT are indicative of
flow quality effects, the increments between Tunnels 16T and 4T data
can at least provide a qualitative indication of the wall interference
in Tunnel 4T, The symbol size used in the data figures approximates
the data uncertainty in each parameter.

421 Determination of Model Incidence

As may be noted in subsequent figures, the data from both models
show discrepancles in the zero lift angle of attack between the three
tunnels, The values of 4, were obtained in each of the tunnels by
testing the model upright and inverted in a 4-deg angle range in the
neighborhood of zero 1ift, 1In Tunnel 11IWT the inverted tests were
accomplished by rolling the model with respect to the balance, whereas
in Tunnels 16T and 4T the model and balance were rolled together.

Data were taken in Tunnels 16T and 11TWT at each Mach number. Howaver,
in Tunnel 4T inverted data were taken only at selected Mach numbers

and at only one porosity schedule. Thus, the emall differences indicated
between Tunnels 16T and 11TWT data reflect differences in technique ax
well as accuracy. However, as can be peen throughout the data the two
techniques give results within the accuracy of the measurements. The

% data from Tunnel 4T, however, also reflect a lack of knowledge of

the Integrated tunnel flow angularities at porosities off the operating
porosity schedule. For the purposes of this investigation, however,

the small discrepancies in g Are of little consequence. The additional
data gained in the time it would have required to take the inverted
data far out weighs the worth of a third redundant measurement of tge
The more important parameter to consider as an evaluation of wall
interference 1s, of course, the Lift curve slope.
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4.22 Comparison of the M3 and M6 Mode! Deta

Subsequent discussion in this section will consider the data taken
in the three tunnels on the M3 and M5 configurations at representative
" Mach numbers in ascending order. Consider first the lift data takenm
at Mach number 0,7, Fig. 12a. The data from Tunnels 16T and 11TWT
ngrci well except above 3 deg with the M3 model. Actually, Tunnéls
11TWT and 4T 1ift data on the M3 agree batter with each other than
with Tunnel 16T. The values of acL/aa prior to stall are essentailly
the same in the three tunnela for both models, which would imply no
measurable wall interfarence. At angles of attack greater than about
0.5 deg the lift is greater in Tuunel 4T than in Tunnel 16T for both
models. Wing pressure distributions taken on the M3 model indicate
the flow becomes critical at an angle of attack of about -2 deg. While
the terminal shock is at the same chord station in sach tunnel, the
minimum windward preasure coefficient is lowar at all porosities in
Tunnel 4T, =1.8 in Tunnel 4T compared with -1,55 in Tunnel 16T. At
higher incidences a Type B1 scparation* (after Pearcy ot al., Ref, 7)
occurs on the outboard portion of the wing in both tunnels. A shock-
induced separation bubble is formed in each case at an angle of attack
of about =1,5 deg. Divergence of the trailing~edge pressure occuras at
o = 0.5 deg in Tunnel 4T and at about 1,0 deg in Tunnel 16T, Howaver,
once trailing-edge divergence occurs, the separated area on the outboard
sections moves alwost immediately to the wing leading adge in Tunnel 167,
whereas in Tunnel 4T separation does not reach the leading edge unt*l
a= 2,5 deg. Sketches of the phenomena inferred from the complete
pressure distributions are presented in Fig. 13 along with the pressure
at x/c = 0.01 on the leeward side of the wing versus angle of attack.
The pressure distribution on the windward side was essentially identical

*The term Type B separation is used to designate a class of transonic

flow in which trailing-edge spearation "plays a significant part in the

overall development" of the wing separation pattern as opposed to Type A
separations which are entirely shock induced.

16
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in each case. Type B1 separation occurs at both sections 1 and 2.
Section 3 appears to have a Type A separation in both tunnels with the
separation not reaching the leading edge and with the rate of the

bubble growth, ie, dx/do, almost identical in each case. The separation
patterns in Tunnel 4T appear to be essentisllv independent of wall
porosity. Since the size of the separated region on the M5 is smaller
at a given incidence (>0.5 deg) in Tunnel 4T, the wing produces more
1lift than in Tunnel 16T. A similar phenomena of almost equal magnitude
apparantly occurs for the M3 since the 1ift increments (Tunnel 16T to
Tunnel 4T) are essentially the same for the M3 and M5 models.

The agreement of the drag data at M_ = 0.7, Fig. 12b, betwaen the
three tunnels parallels that of the lift except for the M3 model in
Tunnel 4T where the drug is consistently less than that in Tunnel 16T
or Tunnel 11TWT throughout the Mach number range of the investigation,
At least part of the discrepancy stems from a malfunction of the M3
base pressure instrumentation in Tunnel 4T. As a result, the drag
comparisons presented for the M3 in Tunnel 4T are based on total drag
rather than forebody drag. Nevertheless, even allowing for reasonable
base pressures the axial force was still lower for the M3 in Tunnel 4T.
The fact that the M5 drag is in relatively good agreement in the three
facilities would tend to discredit arguments for a blockage-type effect
causing the M3 differences. Thus since 1lift and pitching moment, to

be discussed below, are in reasonable agreement 1t would appear that

the skin friction was less on the M3 in Tunnel 4T than the other facilities.

The pitching moment, which for the ONERA models is much more

sensgitive to changes in the wing pressure distribution than either 1lift or

drag, 1s presented in Fig., 12c¢c, The data from tha M5 in Tunnels 16T and
11TWT are in excellent agreement, whereas the data from Tunnel 4T reflect
the effects of changes in the wing aeparation pattern. Tunnels 11TWT

and 4T data for the M3 are, as with the 1lift, in much better agreement
with each other than with the Tunnel 167 data.

17
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The force and moment coefficient obtained in the three tunnels at
M » 0,84 are presented in Fig. 14, The flow is supercritical at all
angles of attack. The agreement batween the data sets iz very similar to
that obtained at M = 0.7 except the divergence between the Tunnels 16T
and 4T data begins at a lower angle of attack, i.e., -1 deg at M, = 0.84
compared with 1.5 dey at M = 0,7. The pressure distribution on the M5
again indicates a Type Bl separation at station 1 in Tunnels 16T and 4T.
The shock-induced separation begins at o = =2,0 deg in Tunnel 16T and
=1.5 deg in Tunnel 4T with trailing-edge separation at sbout -1 deg in
each case. But, as at M = 0.7, trailing-edge separation proceeds forward
more slowly with increasing incidence in Tunnel 4T. Thus, because the
extent of the trailing-edge separation is more forward, the terminal
shock in Tunnel 16T is forward of that in Tunnel 4T. The preliure
distributions at a = 0,5 deg, shown in Fig. 15a, are typical of that
condition. At section 2, trailing-edge separation also occurs at about
~1.0 deg in Tunnel 16T but doer not occur at all in Tunnel 4T. As a
result, the terminal shock at section 2 with a = =1,0 deg is also
further forward fn Tunnel 16T with correponding lift loss. An example
is shown in Fig. 15b., However, the pressure distributions at section
2 for a = 3,5 deg are very similar in Tunnels 16T and 4T as shown in
Fig. 15¢. At section 3, the flow at the trailing edge is only
slightly separated in Tunnel 16T which results in fairly good agreement
of the data from the two tunnels even to relatively high angles of
attack as indicated in Fig. 15d.

At each angle of attack the initial expansion over the leading edge
of the wing is slightly greater in Tunnel 4T than in Tunnel 16T, Fig. 15.
However, the effect of porosity in Tunnel 4T on ull parameters is rela~
tively minor., It is conceivable that the overexpansion in Tunnel 4T is
the only effect attributable to wall interference. However, it is just

as probable that the overexpansion is caused by transition moving to
the leading edge in Tunnel 4T as discussed in Section 4.1, causing a
thicker boundary layer than was experienced in Tunnel 16T.
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At low angles of attack where the 1ift, drag, and the M5 wing
pressure distributions from the two tunnels are in reasonable
agreement, the pitching moment is not, for either model. Thus, it
would appear that the flow field im the vicinity of the tail has
been distorted in some manner also essentlally independent of Tunnel

4T porosity.

As shown in Fig. 16, the agreement between Tunnels 16T and 11TWT
data at M_ = 0.9 is essentially within the measurement accuficy'except
for two values of pitching moment on the M3 model. The lift data
indicate Tunnel 4T is ton closed at all porosities with both models.
However, pressure data from the M5 wing again show that differencea
in the shock and separation patternas between Tunnels 16T and 4T are a
major contributor to the data differences, Fig. 17 presents the
pressure at x/c = 0.%" versus incidence, whereas Fig., 18 ghows represen-
tative chordwise precsure distributions. Although the separation
pattern near the wing tip at t = 3 percent in Tunnel 4T (Fig., 17a) is
very similar to that in Tunnel 16T throughout the incidence range, the

. midspan pattern (Fig. 17b) is quite different at the higher angles as

is the shock position at both stations (Figs. 18a and b) at positive
angles of attack. The pressure at station 3 is independent of porosity
in Tunnel 4T. However, there are small but significant differences
betwean the measurements at station 3 in Tunnels AT and 16T at negative

incidence.

The data in Fig. 18 illustrates the flow over the forward portion
of the wing is more expanded in Tunnel 4T than in Tunnel 16T. Local
speeds are about 0.1 higher in Mach number in Tunnel 4T, However, based
upon an examination of local pressure vereus incidence, the flow in
that region (x/c = 0.2) appears to be separated in Tunnel 16T and
attached in Tunnel 4T, Thus, since the flow tends to stay attached,
both in the neighborhood of the shocka and at the trailing edge, more
in Tunnel 4T than in Tunnel 16T, it does not seem appropriate to
attribute the difference in local velocity entirely to tunnel wall-

interference perturbation veloclties.
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Note rhat porosity variations in Tunnel 4T affect the shock/separation
locus on the M5 wing at M_ = 0.9, wheveas at lower Mach numbers the
preasure distributions were essentially independent of porosity. At
section 1, Fig. 18, the terminal shock at T = 3 percent is forward of
the shock in Tunnel 16T but is aft of the Tunnel 16T location at T = 5 and
7 percent, At sections 2 and 3, howsver, two other relationships are
evident. However, as may be seen in Fig. 16, porosity changes have little
effect on the total forces and moments with either model.

The force and moment data taken at M_ = 0.95 are presented in Fig. 19,
Again, there is very good agreement between the data from Tunnels 16T and
11TWT for both models. In viev of the differences seen at M_ = 0.9, it
ia surprising that the data for the M3 model from Tunnels 16T and 4T
agree 80 well, Near mero 1lift, the lift and pitching moment for the M5
model in Tunnel 4T agree wall with the two large tunnels, Howevar, the
wing pressure distributions for that condition, presented in Fig. 20,
show the terminal shock in Tunnel 4T to ba 0,09c forward of the location
in Tunnels 16T and 11TWT., The windward pressure distribution (mot
presented) are almost identical in each case. Obviously, the wing lift
is less and the wing pitching moment is more positive in Tunnel 4T.

Thus, it would appear that there is at CL-O. M_= 0,95, effects at the
tail which exactly compensate for the discrepancies at the wing. At
higher or lowar angles 'of attack, the effects are not exactly offsetting
but nevertheless appear to be opposite in sign in contrast to the
disturbances present at lower Mach numbers. Apparently a similar
phenomena also occurs with the M3 model since the agreement between

Cm in Tunnels 16T and 4T is much better at M_ = 0,95 than the lowar
supercritical conditions.

The initial flow expansion over the forward portion of the wing
for a given incidence at M_ = 0.95 is essencially the same in the three
tunnels. Representative data are presentead in Fig. 21. However, the
terminal shock is more forward and tha trailing~edge pressura is higher
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in Tunnel 4T in every case, The difference between the shock location

E
f t ) in Tunnels 16T and 4T is a function of span station. Thus, if wall
interference is responsible for the shock displacement in Tunnel 4T,
; the perturbation velocities would appear to have a large spatial
; dependency.
|
] The force and moment data obtained at M_ = 1,0 is presented in
fw i Fig. 22. It is astonishing that the lift and drag data on the M5
:' agres 80 well and appear to be independent of porosity in Tunnel 4T.
‘{ { While the 1ift data from the three tunnels on the M3 is also in excellent
agreement, the M3 drag in Tunnel 4T is considerably less than was

measured in either of the large facilities. The pitching=-moment data

{

! on both models in Tunnel 4T are affected by disturbances probably

! in the region of the empennage., M5 wing pressure distributions in

’ ) Tunnels 16T and 4T are aslentially identical to the terminal shock

‘ position at all angles of attack. Typical distributions are showm in

% Fig. 23, The position of the terminal shock in Tunnel 4T is a function
i of porosity, moving downstream with increasing porosity. The terminal
! shock location at 7-percent porosity in Tunnel 4T at all angles of

! attack is almost identical to that in Tunnel 16T which accounts for
relatively good agreement of the pitching moments for those two cases

and poor agreement at the lower porosities.
g 423 Comparison of the C& Model Data

\ Representative comparisons of the pressare distribution along the

} C5 model are presented in Fig. 24. The symbol size is approximately the

! same as the two-standard-deviation uncertainty of the data. The data

i from Tunnels 16T and 11TWT agree, except in rare inetances, within the
data accuracy at all Mach aumbers. At M_ = 0.8 and below, the data

from Tunnel 4T also agree (within the uncertainty band) with the data

from the larger tunnels except near the rear of the model at t = 7

percent., As Mach number is increased the pressures in Tunnel 4T are,
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in general, higher over the forward portion of the model and lower at
the rear, Somewhat surprisingly, however, the flow over the bulge in
the middle section which represents the wings 1s almost identical in

all cases,

Theoretical calculations of blockage interference, uaing the
method described in Ref. 2, are presented in Fig. 25 for the C5 model
\ at various Mach numbers. The value of the porosity parameter, Q, of
i 1 : 0.6 is thought to be close to an average value for Tunnel 4T although,
¥ in reality, the wall boundary condition varies spatially with Mach

- number, porosity, and local boundary-layer parameters, The inter=-

. ;}" ference "trends" predicted by the subsonic theory are the same as

observed in the experimental data. However, the magnitude of the

! interference pressure correction is less than the uncertainty of the

| experiment and varies with increasing Mach number from a factor of two “
to almost an order of magnitude smaller than the experimental data

indicates. Similar results were obtainad for a 2D lifting wing reported

in Ref. 5. It should be noted that the experiment described in Ref. 2

used a model with a solid blockage and experimental technique almost

identical to the C5 model. The experimental intecferences measured in

j Ref. 2 ware in good agreement with theory up to Mach numbers of 0,98.
| : The magnitude of the interference calculations for tha two cases was

r algo very similar. However, the flow over the model in Ref. 2, a
supercritical body of revolution, did not contain strong shock waves.
In the present investigation a strong shock is present In the midportion
\ \ - of the C5 model where theory predicts, perhaps coincidentally, rela-
'1. . : tively little interference. The effects of the shock propagating both
1 i upstream and downstream could be the cause of the grossly underpredicted
: interference by the subsonic theory in the present case.

To illustrate the variation of the "blockage interference" with
Mach number, the pressure at three axial stations on the C5 model is

presented versus Mach number in Fig, 26. Also shown adjacent tv the data
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is the local pressure correction predicted by the subsonic theory

. but with an ordinate scale ten times that of the data. The data from
i i v Tunnels 16T and 11TWT are identical except in the region of the rapid

: ' expansion at x/L = 0,536 where the Tunnel 11TWT data are in closer
agreement to tha data from Tunnel 4T, It is suspected this discrepancy
is caused by a small separation bubbla forming in Tunnel 16T which

did not occur in the other tunnels. If that is the case, then the
Tunnel 4T data indicate unmeasurable interference throughout the Mach

S I P L wr T

number range in the neighborhood of x/L « 0,536. The interferences
upstream and downstream of the midasection, both measurad and predicted,
are of opposite sign which illustrates that simply incrementing the
free-stream Mach number will not "correct" the data taken in the
transonic range on models whose length-to~tunnel height ratio is not : |
very small compared to unity.

T L ST e - P LD

?. | It is interesting to note that the data on the forward portion
i C, of the model at v = 7 percent in Tunnel 4T agree well with the larger 1
' tumnel data throughout the Mach number range., In contrast, at the lower |

Mach numbers, the flow over the rear portion of the model is overexpanded
at T = 7 percent in Tunnel 4T, It is poasible the latter discrepancy
: : could have been caused by operating the tunnal at other than optimum

pressure ratio since the value used 1s an extiapolated value and not
o the result of a direct calibration at the conditions of the test. At the

ﬁ\ \ higher Mach number, howaver, the data from the rear portion of the model

ﬁu j at t = 7 percent is essentially the same as that of the other porosities. :
g' ‘ _ Thus, it would appear that, in general, the better agreement obtained :
% ’; ' betwcen Tunnels 16T and 4T in the M3 and M) pitching-moment data at |

L ' 1 = 7 percent at the higher Mach number is probably the result of a "more
b _ favorable" interaction of the wing flow field with the tunnel boundaries
@3 . . rather than a decresase in the blockage interferance in the region of the
empennage with increasing porosity.
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5.0 CONCLUDING REMARKS

The large effects of Reynolds number, tunnel flow quality, and
small differences in model geometry do not allow an assessment of
wall interference to be made with the ONERA models. A primary cause
of the data differences betwsen the teat of the M3 and M5 models in
Tunnels 16T, 11TWT, and 4T is shown to be changes in the wing shock/
separation patterns throughout the range of test variables. Both the
M3 and M5 nodel data showed similar tunnel-to-tunnel varfations except
for the M3 drag which was consistantly lower in Tunnel 4T than in the
larger facilities. However, as would be expected, the M3 model data
from Tunnel 4T was closer to the large tunnel data because of the
reduced blockage. Nevertheless, thare was not a value of porosity in
Tunnel 4T at any Mach number which resulted in a replication of the
data from the larger facilities for either model. In fact, for a rare
case in which the 1ift, drag, and pitching moment from Tunnel 4T at
three values of porosity simultaneously agreed with Tunnals 16T and
11TWT values, the M5 wing pressure distributions showad the agreement to
bo fortuitous. Thus, the results of tests on the M3 and M5 models very
dramatically show the necessity of evaluating the susceptibility of model
data to Reynolds number and tunnel flow quality before attempting to lump
all data discrepancies measured between two tunnel tests into a single
category.

Tests to evaluate blockage effects of the C5 area equivalent body of
revolution showed the variation of the experimental "interference' to
agree well with the prediction of subsonic theory but to be larger in
magnitude by a factor of two to ten as a function of Mach number. The
C5 data also show that because the distribution of blockage interference
changes sign along the length of the model, simply incrementing the
free~stream Mach number will not compensate for the interference.
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l MODEL
(“ .'- Wing span, By T
[
| s

Ref. chord, (m
O Ref. surf, {m y
) Fus, length, L (m) 0.5M ] g
oo { Fus, diam, D¢ (m) |0.060 | 0.124 s
f: ‘ Max. cross section, (m2 | 0.0043 | 0,083

-_‘t. | Figure 3. Model dimensions.
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Figure 11.

Ettect of Reynolds number

on the M6 wing pressure
distribution with fixed transi-
tion in Tunnel 16T, M_ = 0.84.




|

. AEDC-TR-76-133

M TuNNgL
— 1eT

by o 1ITWTY

b ] AT, T v 3%

a l %

L. Y ™

h‘

iy

13 b M8 MODEL

. E 0.8
] 5 <] a [

{l 0.8} u/ a N [y
E o4} /) .
E
v 0.2 .

¥ ' .

Bt l ° 0

,. \ - j / / ;)(

" 2

i | § -0z

18 ! g M3 MODEL
! ¥ o»

8 | 'g os} ol o0 oh al a B
. ]: | o4l /yr(d/»//)/ |
S i
y; | ! oe} / / p
b | 0

1 -8 0 0 ) 0 8
| ANGLE OF ATTACK, a
|

a. Lift coefficient
| Figure 12, Comparison of force and moment coefficients at M_ = 0.7 in Tunnels
| 16T, 11TWT, and 4T.

45

e s Va0 e AR L S e ity e el

et e ey R TR o medeies a - PIEITUSAE R A R PR
. el ' s ,

A A e Wl T N e TRy T '-.'



RN RRpS5 PULIEIE VI SNE D SRS S S foa

L

e
e
-

ote

tl Il
L

3%
%

dlalals
4

Ts3I%

M TuNMG,
13,
NITWT
4t

M8 MODEL
46

M3 MODEL
0
DRAG COEFFICIENT, Cp

b. Drag coefficient
Figure 12, Continued.

!
I

L _y 1 L 1
# ©0 & e e + & o
(=] o o o o o

0.0
-0.2

13 “1N3191£3309 L403

[}
[ d
-
o
T
x
K
2
o
o
<

i e —— e ———— T I T e
e = - e e et e ST T T &l EARAN ) - - . LT : wE “M. "
- A A - . _ . N ot .
~ AR -3 i . . et s o s - - . ol e - A
BRI - e . SN . Sl D e b S R BN L e D R e R i e Gl I e T =7 L a3




AEDC-TR-76-133

.
J
o.ls

o.0e

PITCHING-MOMENT COEFFICIENT, Cm

Y TONNEL
sT
1ITWY
4T, T2 3%
1 e
T%
M8 MODEL
a
a
s
a
A
M3 MODEL

47

oo a4 o )

¢. Pitching-moment coefficient
Figure 12. Concluded.

- . - L i 2 o
® e ¢ ®w O o ® @ « w o =
o o o o .w -1 o o o o

1 “I1NF:N43309 1311

e A« At AR ot e P nanY bt ot St e i Sk s 8 S At o WY e e o e o A G el e e s T Re e e ) AT ST e e R S n o S A

el A

T

[ A

[

[RICPRTT FR TP EN

R )

SR N - LI PR e

MO Sy

[ TENT, UL




. |I

g |

- AEDC.TR.76:133 .
|

bl o 18T

K ’ u 4T, ved%
. /. [N ™
B -2.0 le’ 4
T .18}

'
: ‘. ' .'I‘

E ',“\' i

A -0

-

A - 04

i 04
. 0.0 8. Seation 1
' S
N \ . ~L8F
‘\' i ; .
k' ' g e
B [%
i i g -0.8 a, deg . AT
9 ; h .
4 : I _— A
20 g o . e
. i g ] s e R e
e i
o ]
‘ . 0.4
b ' e B._Section 2
\- l !
R . -8}
- ‘ K
- | ( -
f 1 | -0.0 -=«Cp ] o, deg 18T 4T
NI '; | e e
.' v .r' E 04 r 1 2 L_.)"?"' b:-.-—~
i? © oy l 0 3 e .
‘ l i 0'25 0 8 .
B ANGLE OF ATTACK, a
' o. Section 3

Figure 13. Pressure at x/c = 0.01 and separstion pattern on the
ME wing at M_ ~ 0.7 in Tunnels 18T and 4T.




! \ y
| ¥ 3
-:.-1 ‘ . AEDC-TR-76-133 i
(}.
| )
1
)
1
{
. ™ g,
' : — T
F | o 1ITWT
:...; ! o 4T, T o 3%
§ | a l 8%
‘:1 r' | & ™
. M8 MODEL
. 0.8 1
- } 0. P
Y P!
" | 0.4
3 0.8 F
P d
; [ X
1 = 0
3 5
¥ Q.08
\‘ U
] M3 MODEL
s 8 os
(L)
! £ osl D ad & N
l = — /“"L- w))/ 9))"
|
, i 0.4f h/y 1
|
g oz} .
I’ o ’ ° / f / /
g : 02 ) ° o ) s
: ANGLE OF ATTACK, a

a. Lift coefficlent
Figure 14. Foros and moment coefficlents st M_ = 0.84
in Tunnels 18T, 11TWT, and 4T,

R D . e~ r——— e e o

CUSTRE L RO E WEIVASIE 77 * S




e T T T P e ro—— -~ T v g T e ey e e e - - i
. e
* * - -
¥ } 4 L T T L3 ul
o
©
- =4
o
- =]
©
2 RE °%
n o~ .
a .'- tnm
4 4 J 2 € 3
4 - et |4 [ ] . h =
= o a o L OoF
L o o o -w = E
- b3 < = U— T3 o £
ol . o o° 28 o
m o0 aga = b e ¢© 0
o S o
= =5
o s &~
oo
° ~ T
lli ﬁl&
2. 1 4
« o ¢« ® o =
(-] (-] o -] (<]
o L }
@ T *iwI:0144
<
o
[
g
o
o
w
<
e e - - - ———e———




E . AEDC-TR-76-133

P

X

) XM TYUNNEL

k‘ — QT

! °  1ITWT

o 4T, v v 3%
o 8%

k & ™

".:

! MB MODEL

» 0.. T T T

1A

E =] [N

i A - ° -
: 0e S ° & N [

! o %

| 04r jf o Ad LY i
' ozl o 4 b J
{

! S o S

: w0 \o \A \“"‘
i o a LY
H g -0.2 Q A 1 i

! i M3 MODEL

P g °u. LE—— T

! (11

: g o6l o AAA bh“ .
| 0 of/ o op v !
! o}

} & K{ Y ﬂ
: o N

| SRS\
‘ ) 0 0 0 0.08 ole
! PITCHING-MOMENT COEFFICIENT, Cm

'.

: ¢. Pitching~moment cosfficient

, Figure 14. Concluded,

J.

;

i

% L]

,:'.

L

: 51

(.

i

.

T S T I A T By T e R e Ty N W LR O I L T TR S IR L LI U I SRR T |




4 o +

+ o : i

. i

o ! AEDC-TR.78133
& {

- ? -
!

5 '

.;- \ | SYM TUNNEL Y 3 /7

x 6T — m———t-
- ' aT,T " 3% 2\
5%
7%

o]

SECTION |

7 b O

o i - '.6 Y ™ T Y
N

b. Section 2, o = 0.6 deg

-I.G' T T T T T T T T

PRESSURE COEFFICIENT, Cp

L.

: O 02 04 06 08 10 O 02 04 06 08 10 i
g | j x/¢ x/¢ b

i

o
¥

. c. Section 2, = -3.6 dey d. Section 3, a = 2.3 deg 3
Figure 15, Selected M5 wing pressure distributions at M_ = 0.84, X
I
f 52
i ‘l .
f i

S s e e as .
s hrackan e . M-ttt bt s+ R U




AEDC-TR-7A-133

TUNNEL
187
HTWT
4T, T+ 3%
%
7%

M5 MODEL

[A}

M3 MODEL

LIFT COEFFICIENT, C

0 )
ANGLE OF ATTACK, a

a. Lift coefficient
Figure 16. Force and moment coefficients at M_ = 0.90 in Tunnels 16T, 11TWT, and 4T.

e e e o eeagre a e e e e e e ad
o S S e STV MV JNr ST AT A e o4t il Y i e gl | -1 300 P st —MW-@«-M-»»«




- AT TRy A v et A [N * = & T
- - hd x . ¢
®°
T LS 1 ¥ (1 R 01
[
o
i 3
< o
g2 L= of
a -3 9 - -Nll m.w
- 4 w < 4 w 3
® .~ Bilo < 3 S &
- o o ¢ o=
sy s L) 3 < = mm
- - el D b9 ® = o «w
x = 8 m -+
m__ oD ga a\ —] =\ o © 3 wn
© We
o < -
o ) x DN
. o3 ; B
7S = / sl ‘g
/ /J
E L i T A - 1
® ¢ « & o & ®© ®
[ o o o o o =3
) ]
[ ]
- U9 *ININI4I0D L1441
! Y
: ¢
Pt
: a
K m
<
“nV.|I ———— et 2 o AT E raSiaxs > gt B B S L~ N - -~ -
.1..%&..,(,..“ ) . s . T . )




. AEDC-TR.78-133
M TUNNGL
— 18T
o 1iTWT!
o 47,7 = 3%
a l 5%
& %
Y. ME M
¥y _ 0.8 & MODEL -
b ‘ 0. 1
i F
I 0.4} 4
" | °|z 9 N o
: | B
-;v' l [3) 0
g | g ¥
: w . b
Iy ' . § -0.2 .}
‘3 ’ ra M3 MODEI.
3, ' 8 0.8 Y T ny
i Q
. ! - . . )
Ao ™ 0.6} DD f & .
5 - o A &
i Iy N
: Q.4F ° ) c:', s & L
| o a N
) o a N
1| ! o.2r o x\ I\ 7
: | .
- - ! 0 Z b
- \u \A I
" . : -0.2 LT S
o J 0 0 o 0.08 o1&
: ! PITCHING=MOMENT COEFFICIENT, Cm
-f ¢. Pitching—moment coefficient
Figure 18. Concluded.
55




AEDC-TR-78-133

4

B
E
h

F
-
g ]
"
o
]
»

SECTION !

kI S U

"02
i P_ '!
- j -0.8
' 0.4
|
i 0
{ a. Section 1
" -l.a .

-0.4 ™~ I

b. Sectlon 2

PRESSURE COEFFICIENTY, Cp

A j
)
-0 .
. i
g i -0.8

\

0
-85 0 8

| ANGLE OF ATTACK, a . 4
i ¢. Section 3 R
Figure 17. MB wing pressure coefficlants at x/c = 0.46 in Tunnels 16T and 4T,

M_ = 0.90. .

- r‘

' u‘ ' -0.4M -
f‘t
|




AEDC-TR-76-133

ax
01 €0

.‘WQuu.m.cnnElgui?igg -gi eunbig

€ uogNes 3 _ Z uogMs g L uoddes e
3/x /X

(=

N

T

90 #0 20 O Ol 80 90 %0 20 O O1 €0 90 %0 20

T L L 4

<@ - - - §eo

-
1
T
hd
o

do ‘IN3IIDI44300 IuNSSINd

} NOILD3S

e

B D
T

57

e e _ Gy U — —
A
LTI T Pl a1 e o S it e 2 L o - .
o T L T R e o N r S B S v Mz oy ooy it ot s e i E s .
A S e R L S, e B S T B T i B I e | me S T Tt o etz e e i




mr et

‘ AEDC-TR-76-133

0N YU,

o IHTWT

P P PR

e R -
LA
PO

A 41‘. Ts 3*

8%

3 ™%
i

(A M8 MODEL

b

e osl

R " oa}f 4
T @

of (N .

o
(-]
o)

=] -3

e

L
1 A A s
- e

7
-8 0 0 0

ANGLE OF ATTACK, a

J

’
o
L)

(=]
[
T

©
[
T

= G
LIFT COEFFICIENT, C
o

o
'S

AN

o
[ ]

s. Lift coutficient
¥ Figure 19, Force and moment cosfficients at M_ = 0.95 in Tunnels 16T, 11TWT, and 4T.

8
A
1y

N . ‘ R —— e e T AR R e )
e C el e g Lot P TR Y et e AT UG WARHEDL PR TR




h
YA .
S
i
¥
1 i
g
Ll
VI
Y
Il )
L
|
'
o l"{
b N

N

LIFT COEFFICIENT, Cp

08

0.6

0.4

0.2

-0.2

M Tieeeg,

——

18T
HITWT

4T, v 3%

%
™

MS MODEL

AEDC-TR-76-133

0=

A

M3 MODEL

4

o0

ol

=]

(&)

q
BB Ll
o
=
-}
L "
1 T
-
-
o
L L

DRAG COEFFICIENT, Cp

b. Drag coefficient
Figure 18, Continuad.

(o

0

0.08 0.l




. l
'l: i
T,
L.
!
1
k.
-~
y
\ 1
..]‘
+ S
“J .
; }

AEDC-TR-76-123

0.8

o8l

045

o

-0.2

*
M TUNMIL
QT
] IITWT
o 4T, v s 3%
a 5%
b 7%
M3 MODEL
T T
o
[+]
\\
'y ke L

M3 MODEL

LIFT COEFFICIENT, S

- |
N

o a

0.2

"

o
o
ﬁ8 T% Aa

~0.16

"
-0.08

0 0 0 0o o.ce Q.16
PITCHING-MOMENT COEFFICIENT, Cyy

¢. Pitching—-moment coesfficient
~Eigure 19, Concluded.

60 ' r.'

T T



wa

AEDC.TR-78-133

1] 0182 ‘G50 =~ I8 vouNQLINIP sansseud Bum G QT 2Bl
£ vogoes -3 Z uonoes “q L uogaeg e ” :
I L4 yx : _.“1
Ol 80 90 0 20 O OIi 80 90 %0 20 O O1I 80 90 %0 20 o, : 3!
. g $e0 %
i 4 = i P

©

do 'INIDIS4309 INNES I
61

L | 1 i
%l 9 “
1 NOLLD3S %S ~ v
: 2 xc=21p © :
WI > LMLl o
174 nn@h 19! o
enl WS




X
c1 €0

Bop 2- = D ‘GE'0 = ~ N 3¢ vonnQuISsIp ameseid Buwm Gy sannueseidey |z smnbid

€ uondes 9 2 vondes °q L uonJeg e
/% 2%

T T ~ 1 T L3 L)

mﬁ - J- =

T

g0 #¥0 20 O ©O1I 80 90 0 TO O Ot 80 90 +0 =20

T T

i . 1 L 1 1 ;8 i
I NOI1D3S %L
«s
o ° %g =2'1¥
S m nm
®
c
ey
(4]
[
-
<

d3 ‘AN3IDI44300 JUNSSINd

62

o tiiwn

il




b bent - isitt 1

1y PuR IML1i “101 EUUNL W 0L = I 3% SIISIYIS0D JURLOWE PUE 3210 "ZZ sanByy
NG P B

D "NOVLLVY O IFTIONV =

S 4] o 0 o ] S - .
: 20- b

1 71 Sl A A

AEDG-TR-76-133

T

i
pd
o

T
i
®
o

N\
N\
N
\
2

o

1300 &N

63

To ANIINA4F0D 4417

N
N
N
N

N
AN

80

%x0'L

%0t
%G1 =1°L¥
imit

191
I

0 6O Dndqgd

e e —— o i i

e = G - = T T T
- ..., - : ! u.\.w :

i e i T T TEL R B e e T R S L D T SO A T, T



AEDC-TR-78.133

‘porunuo) 2T sy

3usyye00 Suig ‘4

Gy *1NANNIII0D VNG
[ 4]

|e

2o~

v
A4
v
v
v

[+
o
a
o
o

1
|
a

20~

80

TI00W SN
%01 9
%0¢ v
*0€ G
%5l =2 Ly o
1MLl ©
19} —
Wil WS

Tp 'LNDIS4300 LA

64




JUSN)3000 Juswow—BuREly 9

Wy ‘I MANI4I0I LININOM-OND Lid

Q [ o o

‘pepnpuo) -ZZ ambiy

AEDC-TR-78-133

900
¥ L

:.,rqmru

R,

<

o

A\ ¢ R o

% ™

a
A4
N v
13008 SN
%021 9
%0¢ v
%0¢ o
%Gt =211y o
im1it o
191 ——
ey WS

»20-

20-

Z0

»0

90

g0

Q1

<o0-

co

»0

90

80

- e e ST

N T T

[

65

9 *ANDI0144309 L4

ks 14 o 2 11 e et A oa e & e
e 4 oo et e g4 e A4S 1 MO AL & SO LM . 7L,



Bop G0 =7 ‘0’L = W I® vonnqunsip aunssaad Busm gy saneyusseadey g7 anbiy

£ uones
I/x
o1 80 90 ¥C 20 O

ol

/K

80 90

C uondes

q

0 20

0

/%

0T 80 90 +0 20

1 UoRWS ®

©

T ¥ L T ~

T

—

™

T

T

T T LI

7Y
@ o
o -

Lo
*
o

Q
d9 'INDIDI44309 IUNSSIH

i
I NOILD3S
AN

[}

s Wlm‘w
3 €

Ly

@«

K

[&]

o

w

<

R
e

Y

ST L B LEAR et i ST e

.




——

e

e

PRESSURE COEFFICIENT, Cp

-0.8

~0.4 |

-0.2

o
]

©
e
1

°
>

AEQC-TR-76-133
SYM TUNNEL
— 6T
O ITWT
o 4T, v o 3%
A 2%
[N ™
1 1 T 1 T T
hd
- cP R
-
L ————— e e e
Iy L 1 i I\ w\
o] 0.2 0.4 0.8 c.8 1.0

AXIAL LOCATION, r/L
a. M, =080

Figure 24. Pressurs distribution on the C6 model in three wind tunnels,
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E . NOMENCLATURE
! i N Axial-force coefficient
{
1 ' cD Drag coefficient
{ { | c, Lift coefficient
¥ | ' C, Pitching-moment coefficient
A
ﬁ;'. Cx Normal-force coefficient
:EL: cp Pressure coefficient
A t
o ,
: i * c4 Pressure coefficient at sonic velocity
'ﬁ“ j ) cpc Pressure coefficient corrected for theoretical
i f blockage interference
]
. i cpm Pressure coefficient from measured pressures
- !
- 2 { c Wing chord, meters
. l
b .r
gf"} ; L C5 model length, meters
.-" V ‘l
3 { { M Free-stream Mach number
Z' ; P, Free~stream total pressure
B | ©
“! ! Q Porosity parameter
_ “w : Re Reynolds number
’,; \ﬁ' ;
fark |
|
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» A v
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"1 'S.G
": N j X Axial distance, meters
b
- a Angle of attack, deg
o o Angle of attack at zaro lift, deg
‘- T Tunnel wall porosity, percent
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